济南电子元器件网济南PCB机元器件济南多层电路板8OZPCB板工厂,FPC柔性板 免费发布多层电路板信息

8OZPCB板工厂,FPC柔性板

更新时间:2024-05-04 01:44:12 编号:001phjnhgce524
分享
管理
举报
  • 面议

  • 电路板,PCB多层板,FPC柔性板,刚柔结合板

  • 6年

陈生

18938919530 1036958619

微信在线

产品详情

关键词
电路板加工,PCB16层板,8OZ厚铜PCB板厂商,PCB高频板厂商
面向地区
阻燃特性
VO板
绝缘层厚度
常规板
层数
多面
基材
绝缘材料
有机树脂
绝缘树脂
环氧树脂(EP)

8OZPCB板工厂,FPC柔性板

FPC和PCB的诞生和发展催生了软硬组合板的新产品。因此,软硬组合板是将柔性电路板与硬电路板按相关工艺要求通过压制等工艺组合而成的具有FPC特性和PCB特性的电路板。我们今天看看应用领域
1.手机-在手机软硬件板的应用中,常见的有折叠式手机转折处、摄像头模块、键盘、射频模块等。
2.工业用途-工业用途包括用于工业、军事和医疗的软硬粘合板。大多数工业零件要求精度、安全性和无易损性。因此,软硬板所要求的特性是:高可靠性、、低阻抗损耗、完整的信号传输质量和耐久性。然而,由于工艺的高度复杂性,产量小,单价相当高。
3.汽车-在汽车软硬板的使用中,通常用于将方向盘上的按键连接到主板,车辆视频系统屏幕与控制面板之间的连接,侧门上音频或功能键的操作连接,倒车雷达图像系统传感器(包括空气质量、温度和湿度、特殊气体调节等)、车辆通信系统、卫星导航、后座控制面板和前端控制器连接板、车辆外部检测系统等。
4.消费类电子产品——在消费类产品中,DSC和DV是软板和硬板发展的代表,可分为两个主轴:性能和结构。在性能方面,软板和硬板可以三维连接不同的PCB硬板和组件。因此,在相同线密度下,可以增加PCB的总使用面积,相对提高其电路承载能力,降低触点的信号传输极限和装配误差率。另一方面,由于软硬板轻薄,可以弯曲布线,因此对减小体积和重量有很大帮助。

软硬结合板的优缺点:
软硬结合板,就是柔性线路板与硬性线路板,经过压合等工序,按相关工艺要求组合在一起,形成的具有FPC特性与PCB特性的线路板。
因为软硬结合板是FPC与PCB的组合,软硬结合板的生产应同时具备FPC生产设备与PCB生产设备。
,由电子工程师根据需求画出软性结合板的线路与外形,然后,下发到可以生产软硬结合板的工厂,经过CAM工程师对相关文件进行处理、规划,然后安排FPC产线生产所需FPC、PCB产线生产PCB,这两款软板与硬板出来后,按照电子工程师的规划要求,将FPC与PCB经过压合机无缝压合,再经过一系列细节环节,终就制成了软硬结合板。

很重要的一个环节,应为软硬结合板难度大,细节问题多,在出货之前,一般都要进行全检,因其价值比较高,以免让供需双方造成相关利益损失。

优点:软硬结合板同时具备FPC的特性与PCB的特性,因此,它可以用于一些有特殊要求的产品之中,既有一定的挠性区域,也有一定的刚性区域,对节省产品内部空间,减少成品体积,提高产品性能有很大的帮助。

缺点:软硬结合板生产工序繁多,生产难度大,良品率较低,所投物料、人力较多,因此,其价格比较贵,生产周期比较长。

高速PCB设计指南之三
第三篇 高速PCB设计

(一)、电子系统设计所面临的挑战

  随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。
  当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。


(二)、什么是高速电路

  通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
  实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定

  上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间?一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。下图为信号上升时间和允许的布线长度(延时)的对应关系。 
PCB 板上每单位英寸的延时为 0.167ns.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。通常高速逻辑器件的信号上升时间大约为0.2ns。如果板上有GaAs芯片,则大布线长度为7.62mm。
设Tr为信号上升时间, Tpd 为信号线传播延时。如果Tr≥4Tpd,信号落在安全区域。如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。如果Tr≤2Tpd,信号落在问题区域。对于落在不确定区域及问题区域的信号,应该使用高速布线方法。

(四)、什么是传输线

PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的终阻抗称为特征阻抗Zo。线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到。



(五)、传输线效应

基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应。
· 反射信号Reflected signals
· 延时和时序错误Delay & Timing errors
· 多次跨越逻辑电平门限错误False Switching
· 过冲与下冲Overshoot/Undershoot
· 串扰Induced Noise (or crosstalk)
· 电磁辐射EMI radiation

5.1 反射信号
  如果一根走线没有被正确终结(终端匹配),那么来自于驱动端的信号脉冲在接收端被反射,从而引发不预期效应,使信号轮廓失真。当失真变形非常显著时可导致多种错误,引起设计失败。同时,失真变形的信号对噪声的敏感性增加了,也会引起设计失败。如果上述情况没有被足够考虑,EMI将显著增加,这就不单单影响自身设计结果,还会造成整个系统的失败。
反射信号产生的主要原因:过长的走线;未被匹配终结的传输线,过量电容或电感以及阻抗失配。


5.2 延时和时序错误
  信号延时和时序错误表现为:信号在逻辑电平的高与低门限之间变化时保持一段时间信号不跳变。过多的信号延时可能导致时序错误和器件功能的混乱。
  通常在有多个接收端时会出现问题。电路设计师确定坏情况下的时间延时以确保设计的正确性。信号延时产生的原因:驱动过载,走线过长。

5.3 多次跨越逻辑电平门限错误
信号在跳变的过程中可能多次跨越逻辑电平门限从而导致这一类型的错误。多次跨越逻辑电平门限错误是信号振荡的一种特殊的形式,即信号的振荡发生在逻辑电平门限附近,多次跨越逻辑电平门限会导致逻辑功能紊乱。反射信号产生的原因:过长的走线,未被终结的传输线,过量电容或电感以及阻抗失配。

5.4 过冲与下冲
过冲与下冲来源于走线过长或者信号变化太快两方面的原因。虽然大多数元件接收端有输入保护二极管保护,但有时这些过冲电平会远远超过元件电源电压范围,损坏元器件。

5.5 串扰
  串扰表现为在一根信号线上有信号通过时,在PCB板上与之相邻的信号线上就会感应出相关的信号,我们称之为串扰。
  信号线距离地线越近,线间距越大,产生的串扰信号越小。异步信号和时钟信号更容易产生串扰。因此解串扰的方法是移开发生串扰的信号或屏蔽被严重干扰的信号。
5.6 电磁辐射
EMI(Electro-Magnetic Interference)即电磁干扰,产生的问题包含过量的电磁辐射及对电磁辐射的敏感性两方面。EMI表现为当数字系统加电运行时,会对周围环境辐射电磁波,从而干扰周围环境中电子设备的正常工作。它产生的主要原因是电路工作频率太高以及布局布线不合理。目前已有进行 EMI仿真的软件工具,但EMI仿真器都很昂贵,仿真参数和边界条件设置又很困难,这将直接影响仿真结果的准确性和实用性。通常的做法是将控制EMI的各项设计规则应用在设计的每一环节,实现在设计各环节上的规则驱动和控制。


(六)、避免传输线效应的方法
针对上述传输线问题所引入的影响,我们从以下几方面谈谈控制这些影响的方法。

6.1 严格控制关键网线的走线长度
  如果设计中有高速跳变的边沿,就考虑到在PCB板上存在传输线效应的问题。现在普遍使用的很高时钟频率的快速集成电路芯片更是存在这样的问题。解决这个问题有一些基本原则:如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸。工作频率在50MHz布线长度应不大于1.5英寸。如果工作频率达到或超过75MHz布线长度应在1英寸。对于GaAs芯片大的布线长度应为0.3英寸。如果超过这个标准,就存在传输线的问题。

6.2 合理规划走线的拓扑结构
  解决传输线效应的另一个方法是选择正确的布线路径和终端拓扑结构。走线的拓扑结构是指一根网线的布线顺序及布线结构。当使用高速逻辑器件时,除非走线分支长度保持很短,否则边沿快速变化的信号将被信号主干走线上的分支走线所扭曲。通常情形下,PCB走线采用两种基本拓扑结构,即菊花链(Daisy Chain)布线和星形(Star)分布。
  对于菊花链布线,布线从驱动端开始,依次到达各接收端。如果使用串联电阻来改变信号特性,串联电阻的位置应该紧靠驱动端。在控制走线的高次谐波干扰方面,菊花链走线效果好。但这种走线方式布通率低,不容易布通。实际设计中,我们是使菊花链布线中分支长度尽可能短,安全的长度值应该是:Stub Delay <= Trt *0.1.
  例如,高速TTL电路中的分支端长度应小于1.5英寸。这种拓扑结构占用的布线空间较小并可用单一电阻匹配终结。但是这种走线结构使得在不同的信号接收端信号的接收是不同步的。
  星形拓扑结构可以有效的避免时钟信号的不同步问题,但在密度很高的PCB板上手工完成布线十分困难。采用自动布线器是完成星型布线的好的方法。每条分支上都需要终端电阻。终端电阻的阻值应和连线的特征阻抗相匹配。这可通过手工计算,也可通过CAD工具计算出特征阻抗值和终端匹配电阻值。 

  在上面的两个例子中使用了简单的终端电阻,实际中可选择使用更复杂的匹配终端。种选择是RC匹配终端。RC匹配终端可以减少功率消耗,但只能使用于信号工作比较稳定的情况。这种方式适合于对时钟线信号进行匹配处理。其缺点是RC匹配终端中的电容可能影响信号的形状和传播速度。
  串联电阻匹配终端不会产生额外的功率消耗,但会减慢信号的传输。这种方式用于时间延迟影响不大的总线驱动电路。  串联电阻匹配终端的优势还在于可以减少板上器件的使用数量和连线密度。
  后一种方式为分离匹配终端,这种方式匹配元件需要放置在接收端附近。其优点是不会拉低信号,并且可以很好的避免噪声。典型的用于TTL输入信号(ACT,HCT, FAST)。
  此外,对于终端匹配电阻的封装型式和安装型式也考虑。通常SMD表面贴装电阻比通孔元件具有较低的电感,所以SMD封装元件成为。如果选择普通直插电阻也有两种安装方式可选:垂直方式和水平方式。
  垂直安装方式中电阻的一条安装管脚很短,可以减少电阻和电路板间的热阻,使电阻的热量更加容易散发到空气中。但较长的垂直安装会增加电阻的电感。水平安装方式因安装较低有更低的电感。但过热的电阻会出现漂移,在坏的情况下电阻成为开路,造成PCB走线终结匹配失效,成为潜在的失败因素。

6.3 抑止电磁干扰的方法
  很好地解决信号完整性问题将改善PCB板的电磁兼容性(EMC)。其中非常重要的是PCB板有很好的接地。对复杂的设计采用一个信号层配一个地线层是十分有效的方法。此外,使电路板的外层信号的密度小也是减少电磁辐射的好方法,这种方法可采用"表面积层"技术"Build-up"设计制做PCB来实现。表面积层通过在普通工艺 PCB 上增加薄绝缘层和用于贯穿这些层的微孔的组合来实现,电阻和电容可埋在表层下,单位面积上的走线密度会增加近一倍,因而可降低 PCB的体积。PCB面积的缩小对走线的拓扑结构有的影响,这意味着缩小的电流回路,缩小的分支走线长度,而电磁辐射近似正比于电流回路的面积;同时小体积特征意味着高密度引脚封装器件可以被使用,这又使得连线长度下降,从而电流回路减小,提高电磁兼容特性。

6.4 其它可采用技术
  为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容。这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射。
  当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果好。这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小。
  任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲。
  如果没有电源层,那么长的电源连线会在信号和回路间形成环路,成为辐射源和易感应电路。
  走线构成一个不穿过同一网线或其它走线的环路的情况称为开环。如果环路穿过同一网线其它走线则构成闭环。两种情况都会形成天线效应(线天线和环形天线)。天线对外产生EMI辐射,同时自身也是敏感电路。闭环是一个考虑的问题,因为它产生的辐射与闭环面积近似成正比。

结束语
    高速电路设计是一个非常复杂的设计过程。本文所阐述的方法就是针对解决这些高速电路设计问题的。此外,在进行高速电路设计时有多个因素需要加以考虑,这些因素有时互相对立。如高速器件布局时位置靠近,虽可以减少延时,但可能产生串扰和显著的热效应。因此在设计中,需权衡各因素,做出全面的折衷考虑;既满足设计要求,又降低设计复杂度。高速PCB设计手段的采用构成了设计过程的可控性,只有可控的,才是可靠的,也才能是成功的!

PCB电路板沉金与镀金工艺的区别?
镀金,一般指的是“电镀金”、“电镀镍金”、“电解金”等,有软金和硬金的区分(一般硬金是用于金手指的),原理是将镍和金(俗称金盐)溶化于化学药水中,将线路板浸在电镀缸内并接通电流而在电路板的铜箔面上生成镍金镀层,电镍金因镀层硬度高,耐磨损,不易氧化的优点在电子产品中得到广泛的应用。

沉金是通过化学氧化还原反应的方法生成一层镀层,一般厚度较厚,是化学镍金金层沉积方法的一种,可以达到较厚的金层。
沉金与镀金的区别:

1、沉金与镀金所形成的晶体结构不一样,沉金对于金的厚度比镀金要厚很多,沉金会呈金黄色,较镀金来说更黄(这是区分镀金和沉金的方法之一)。

2、沉金比镀金更容易焊接,不会造成焊接不良。

3、沉金板的焊盘上只有镍金,信号的趋肤效应是在铜层上传输,不会对信号产生影响。

4、沉金比镀金的晶体结构更致密,不易产生氧化。

5、镀金容易使金线短路。而沉金板的焊盘上只有镍金,因此不会产生金线短路。

6、沉金板的焊盘上只有镍金,因此导线电阻和铜层的结合更加牢固。

7、沉金板的平整性与使用寿命较镀金板要好。

超实用的高频PCB电路设计70问答之三

26、当一块 PCB 板中有多个数/模功能块时,常规做法是要将数/模地分开,原因何在?

将数/模地分开的原因是因为数字电路在高低电位切换时会在电源和地产生噪声,噪声的大小跟信号的速度及电流大小有关。如果地平面上不分割且由数字区域电路所产生的噪声较大而模拟区域的电路又非常接近,则即使数模信号不交叉,模拟的信号依然会被地噪声干扰。也就是说数模地不分割的方式只能在模拟电路区域距产生大噪声的数字电路区域较远时使用。

27、另一种作法是在确保数/模分开布局,且数/模信号走线相互不交叉的情况下,整个 PCB板地不做分割,数/模地都连到这个地平面上。道理何在?

数模信号走线不能交叉的要求是因为速度稍快的数字信号其返回电流路径(return current path)会尽量沿着走线的下方附近的地流回数字信号的源头,若数模信号走线交叉,则返回电流所产生的噪声便会出现在模拟电路区域内。

28、在高速 PCB 设计原理图设计时,如何考虑阻抗匹配问题?

在设计高速 PCB 电路时,阻抗匹配是设计的要素之一。而阻抗值跟走线方式有的关系,例如是走在表面层(microstrip)或内层(stripline/double stripline),与参考层(电源层或地层)的距离,走线宽度,PCB材质等均会影响走线的特性阻抗值。也就是说要在布线后才能确定阻抗值。一般仿真软件会因线路模型或所使用的数学算法的**而无法考虑到一些阻抗不连续的布线情况,这时候在原理图上只能预留一些terminators(端接),如串联电阻等,来缓和走线阻抗不连续的效应。真正根本解决问题的方法还是布线时尽量注意避免阻抗不连续的发生。

29、哪里能提供比较准确的 IBIS 模型库?

IBIS 模型的准确性直接影响到仿真的结果。基本上 IBIS 可看成是实际芯片 I/O buffer 等效电路的电气特性数据,一般可由 SPICE 模型转换而得 ,而 SPICE 的数据与芯片制造有的关系,所以同样一个器件不同芯片厂商提供,其 SPICE 的数据是不同的,进而转换后的 IBIS 模型内之数据也会随之而异。也就是说,如果用了 A 厂商的器件,只有他们有能力提供他们器件准确模型数据,因为没有其它人会比他们更清楚他们的器件是由何种工艺做出来的。如果厂商所提供的 IBIS 不准确,只能不断要求该厂商改进才是根本解决之道。

30、在高速 PCB 设计时,设计者应该从那些方面去考虑 EMC、EMI 的规则呢?

一般 EMI/EMC 设计时需要同时考虑辐射(radiated)与传导(conducted)两个方面. 前者归属于频率较高的部分(>30MHz)后者则是较低频的部分(<30MHz). 所以不能只注意高频而忽略低频的部分。一个好的EMI/EMC 设计一开始布局时就要考虑到器件的位置, PCB 叠层的安排, 重要联机的走法, 器件的选择等, 如果这些没有事前有较佳的安排, 事后解决则会事倍功半, 增加成本.。



例如时钟产生器的位置尽量不要靠近对外的连接器, 高速信号尽量走内层并注意特性阻抗匹配与参考层的连续以减少反射, 器件所推的信号之斜率(slew rate)尽量小以减低高频成分,选择去耦合(decoupling/bypass)电容时注意其频率响应是否符合需求以降低电源层噪声。另外, 注意高频信号电流之回流路径使其回路面积尽量小(也就是回路阻抗loop impedance 尽量小)以减少辐射。还可以用分割地层的方式以控制高频噪声的范围. 后, 适当的选择PCB 与外壳的接地点(chassis ground)。

31、如何选择 EDA 工具?

目前的 pcb 设计软件中,热分析都不是强项,所以并不建议选用,其它的功能 1.3.4 可以选择 PADS或 Cadence 性能价格比都不错。 PLD 的设计的初学者可以采用 PLD 芯片厂家提供的集成环境,在做到百万门以上的设计时可以选用单点工具。

32、请推荐一种适合于高速信号处理和传输的 EDA 软件。

常规的电路设计,INNOVEDA 的 PADS 就非常不错,且有配合用的仿真软件,而这类设计往往占据了 70%的应用场合。在做高速电路设计,模拟和数字混合电路,采用 Cadence 的解决方案应该属于性能价格比较好的软件,当然 Mentor 的性能还是非常不错的,特别是它的设计流程管理方面应该是为的。(大唐电信技术 王升)

33、对 PCB 板各层含义的解释

Topoverlay ----顶层器件名称, 也叫 top silkscreen 或者 top component legend, 比如 R1 C5,

IC10.bottomoverlay----同理 multilayer-----如果你设计一个 4 层板,你放置一个 free pad or via, 定义它作为multilay 那么它的 pad 就会自动出现在 4 个层 上,如果你只定义它是 top layer, 那么它的 pad 就会只出现在顶层上。



34、2G 以上高频 PCB 设计,走线,排版,应注意哪些方面?

2G 以上高频 PCB 属于射频电路设计,不在高速数字电路设计讨论范围内。而 射频电路的布局(layout)和布线(routing)应该和原理图一起考虑的,因为布局布线都会造成分布效应。而且,射频电路设计一些无源器件是通过参数化定义,特殊形状铜箔实现,因此要求 EDA 工具能够提供参数化器件,能够编辑特殊形状铜箔。Mentor 公司的 boardstation 中有的 RF 设计模块,能够满足这些要求。而且,一般射频设计要求有射频电路分析工具,业界的是 agilent 的 eesoft,和 Mentor 的工具有很好的接口。

35、2G 以上高频 PCB 设计,微带的设计应遵循哪些规则?

射频微带线设计,需要用三维场分析工具提取传输线参数。所有的规则应该在这个场提取工具中规定。

超实用的高频PCB电路设计70问答 之四

36、对于全数字信号的 PCB,板上有一个 80MHz 的钟源。除了采用丝网(接地)外,为了有足够的驱动能力,还应该采用什么样的电路进行保护?

确保时钟的驱动能力,不应该通过保护实现,一般采用时钟驱动芯片。一般担心时钟驱动能力,是因为多个时钟负载造成。采用时钟驱动芯片,将一个时钟信号变成几个,采用点到点的连接。选择驱动芯片,除了与负载基本匹配,信号沿满足要求(一般时钟为沿有效信号),在计算系统时序时,要算上时钟在驱动芯片内时延。

37、如果用单的时钟信号板,一般采用什么样的接口,来时钟信号的传输受到的影响小?

时钟信号越短,传输线效应越小。采用单的时钟信号板,会增加信号布线长度。而且单板的接地供电也是问题。如果要长距离传输,建议采用差分信号。LVDS 信号可以满足驱动能力要求,不过您的时钟不是太快,没有必要。

38、27M,SDRAM 时钟线(80M-90M),这些时钟线二三次谐波刚好在 VHF 波段,从接收端高频窜入后干扰很大。除了缩短线长以外,还有那些好办法?

如果是三次谐波大,二次谐波小,可能因为信号占空比为 50%,因为这种情况下,信号没有偶次谐波。这时需要修改一下信号占空比。此外,对于如果是单向的时钟信号,一般采用源端串联匹配。这样可以抑制二次反射,但不会影响时钟沿速率。源端匹配值,可以采用下图公式得到。

39、什么是走线的拓扑架构?

Topology,有的也叫 routing order.对于多端口连接的网络的布线次序。

40、怎样调整走线的拓扑架构来提高信号的完整性?

这种网络信号方向比较复杂,因为对单向,双向信号,不同电平种类信号,拓朴影响都不一样,很难说哪种拓朴对信号质量有利。而且作前仿真时,采用何种拓朴对工程师要求很高,要求对电路原理,信号类型,甚至布线难度等都要了解。

41、怎样通过安排叠层来减少 EMI 问题?

,EMI 要从系统考虑,单凭 PCB 无法解决问题。层迭对 EMI 来讲,我认为主要是提供信号短回流路径,减小耦合面积,抑制差模干扰。另外地层与电源层紧耦合,适当比电源层外延,对抑制共模干扰有好处。



42、为何要铺铜?

一般铺铜有几个方面原因。1,EMC.对于大面积的地或电源铺铜,会起到屏蔽作用,有些特殊地,如 PGND 起到防护作用。2,PCB 工艺要求。一般为了电镀效果,或者层压不变形,对于布线较少的PCB 板层铺铜。3,信号完整性要求,给高频数字信号一个完整的回流路径,并减少直流网络的布线。当然还有散热,特殊器件安装要求铺铜等等原因。

43、在一个系统中,包含了dsp和 pld,请问布线时要注意哪些问题呢?

看你的信号速率和布线长度的比值。如果信号在传输在线的时延和信号变化沿时间可比的话,就要考虑信号完整性问题。另外对于多个 DSP,时 钟,数据 信号走线拓普也会影响信号质量和时序,需要关注。

44、除 protel 工具布线外,还有其他好的工具吗?

至于工具,除了 PROTEL,还有很多布线工具,如 MENTOR 的 WG2000,EN2000 系列和 powerpcb,Cadence 的 allegro,zuken 的 cadstar,cr5000 等,各有所长。

45、什么是“信号回流路径”?

信号回流路径,即 return current。高速数字信号在传输时,信号的流向是从驱动器沿 PCB 传输线到负载,再由负载沿着地或电源通过短路径返回驱动器端。这个在地或电源上的返回信号就称信号回流路径。Dr.Johson 在他的书中解释,高频信号传输,实际上是对传输线与直流层之间包夹的介质电容充电的过程。SI 分析的就是这个围场的电磁特性,以及他们之间的耦合。

46、如何对接插件进行SI分析?

在 IBIS3.2 规范中,有关于接插件模型的描述。一般使用 EBD 模型。如果是特殊板,如背板,需要SPICE 模型。也可以使用多板仿真软件(HYPERLYNX 或 IS_multiboard),建立多板系统时,输入接插件的分布参数,一般从接插件手册中得到。当然这种方式会不够,但只要在可接受范围内即可。

47、请问端接的方式有哪些?

端接(terminal),也称匹配。一般按照匹配位置分有源端匹配和终端匹配。其中源端匹配一般为电阻串联匹配,终端匹配一般为并联匹配,方式比较多,有电阻上拉,电阻下拉,戴维南匹配,AC 匹配,肖特基二极管匹配。

48、采用端接(匹配)的方式是由什么因素决定的?

匹配采用方式一般由 BUFFER 特性,拓普情况,电平种类和判决方式来决定,也要考虑信号占空比,系统功耗等。

49、采用端接(匹配)的方式有什么规则?

数字电路关键的是时序问题,加匹配的目的是改善信号质量,在判决时刻得到可以确定的信号。对于电平有效信号,在建立、保持时间的前提下,信号质量稳定;对延有效信号,在信号延单调性前提下,信号变化延速度满足要求。Mentor ICX 产品教材中有关于匹配的一些资料。另外《High Speed Digital design a hand book of blackmagic》有一章对 terminal 的讲述,从电磁波原理上讲述匹配对信号完整性的作用,可供参考。

50、能否利用器件的 IBIS 模型对器件的逻辑功能进行仿真?如果不能,那么如何进行电路的板级和系统级仿真?

IBIS 模型是行为级模型,不能用于功能仿真。功能仿真,需要用 SPICE 模型,或者其他结构级模型。

上一条 14层PCB板 下一条10OZ厚铜PCB板

留言板

  • 电路板PCB多层板FPC柔性板刚柔结合板电路板加工PCB16层板8OZ厚铜PCB板厂商PCB高频板厂商
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我

公司介绍

深圳市赛孚电路科技有限公司

深圳市赛孚电路有限公司成立于2011年,公司由多名电路板行业的级人士创建,是国内专业的PCB快件服务商之一。的交付以及过硬的产品品质赢得了国内外客户的信任。公司是广东电路板行业协会会员企业,是深圳高新技术认证企业。拥有完善的质量管理体系,先后通过了ISO9001、UL、RoHS认证。公司目前拥有员工270余人,厂房面积8000平米,月出货品种6000种以上,年生产能力为150000平方米。为了满足客户多样化需求,2017年公司成立了PCBA事业部,自有SMT生产线,为客户提供PCB+SMT服务。 公司一直致力于“打造中国的PCB制造企业”,注重人才培养,倡导全员“自我经营”理念,拥有一支朝气蓬勃、专业敬业、经验丰富的技术、生产及管理队伍,专注于PCB的工艺技术的研究与开发,努力提升公司在PCB专业领域内的技术水平和制造能力.
公司产品广泛应用于通信、工业控制、计算机应用、航空航天、、医疗、测试仪器等各个领域。我们的产品包括:高精度双面PCB线路板、PCB多层电路板、HDI电路板、PCB高频板、陶瓷电路板等特种高难度电路板。我们的客户分布各地,目前国外订单占比60%以上。
“ 为客户多想一点,为客户多做一点,以质量为根,服务为本 ” 是赛孚电路科技公司的服务宗旨。公司通过资源整合、流程整合、部门整合;让客户真正感受到快捷、优质、的服务。在发展过程中,公司上下团结一心,共同奋斗,致力于创造的文化、的企业。 公司秉承 ISO9000 标准,坚持持之以恒的精神,全员参与质量改进,不断吸纳国际新技术,完善产品品质,超越客户的需求。

小提示:8OZPCB板工厂,FPC柔性板描述文字和图片由用户自行上传发布,其真实性、合法性由发布人负责。
  • pcb电路板,pcb多层板,hdi线路板,pcb快板
  • 东莞市长安镇睦邻路7号

————— 认证资质 —————

陈生: 18938919530
在线联系: 1036958619
让卖家联系我